Audio Fingerprinting

Audio Fingerprinting (also called Acoustic Fingerprinting) is the kind of most stabled, effective algorithm of ACR and has been widely used in many applications.

An audio fingerprint is a condensed digital summary, deterministically generated from an audio signal, that can be used to identify an audio sample or quickly locate similar items in an audio database. The follow picture gives us an intuitive understanding of audio fingerprint, we can take the black lines and points as fingerprints.


Practical uses of audio fingerprinting include identifying songs, melodies, tunes, or advertisements; sound effect library management; and video file identification. Media identification using acoustic fingerprints can be used to monitor the use of specific musical works and performances on radio broadcast, records, CDs and peer-to-peer networks. This identification has been used in copyright compliance, licensing, and other monetization schemes.

The standard work flow of audio fingerprinting is shown below.

A robust acoustic fingerprint algorithm must take into account the perceptual characteristics of the audio. If two files sound alike to the human ear, their acoustic fingerprints should match, even if their binary representations are quite different. Acoustic fingerprints are not bitwise fingerprints, which must be sensitive to any small changes in the data. Acoustic fingerprints are more analogous to human fingerprints where small variations that are insignificant to the features the fingerprint uses are tolerated. One can imagine the case of a smeared human fingerprint impression which can accurately be matched to another fingerprint sample in a reference database; acoustic fingerprints work in a similar way.

Perceptual characteristics often exploited by audio fingerprints include average zero crossing rate, estimated tempo, average spectrum, spectral flatness, prominent tones across a set of frequency bands, and bandwidth.

Most audio compression techniques (AAC, MP3, WMA, Vorbis) will make radical changes to the binary encoding of an audio file, without radically affecting the way it is perceived by the human ear. A robust acoustic fingerprint will allow a recording to be identified after it has gone through such compression, even if the audio quality has been reduced significantly. For use in radio broadcast monitoring, acoustic fingerprints should also be insensitive to analog transmission artifacts.

On the other hand, a good acoustic fingerprint algorithm must be able to identify a particular master recording among all the productions of an artist or group. For use as evidence in a court of law, an acoustic fingerprint method must be forensic in its accuracy.